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Abstract
Recently some combinatorial aspects for the normal ordering of powers of
arbitrary monomials of boson operators were discussed. In particular, it was
shown that the resulting formulae lead to generalizations of the usual Bell and
Stirling numbers. In this paper these considerations are generalized to the
q-deformed case. In particular, it is shown that the simplest example of this
generalization leads to q-deformed Lah numbers. The connection between
(generalized) Stirling and Bell numbers and matrix elements of the above-
mentioned operators with respect to the usual Fock space basis and coherent
states is discussed.

PACS numbers: 02.10.Ox, 03.65.−w, 05.30.−d

1. Introduction

The process of normal ordering noncommuting operators has been the subject of interest
since the beginning of quantum theory. Let us consider a single boson associated with the
operators a, a†, satisfying the commutation relation [a, a†] = 1. It has been known for
some time that in this case the normal ordering of (a†a)n (i.e., moving all the operators a to
the right) has a close relation to the Stirling numbers of second kind [1]. Recently, it has
been realized that the associated Bell numbers appear when matrix elements of the operators
(a†a)n are considered with respect to coherent states [2]. These Stirling (and associated
Bell) numbers have a long history and have played a major role in combinatorics (see, e.g.,
[3, 4]). They have been generalized in several ways in the last century. In particular,
various q-deformed Stirling numbers have been considered in the mathematical literature in
connection with q-analysis and geometry over finite fields (see, e.g., [5–13]). In the physical
literature various variants of q-deformed bosons (or bosonic oscillators) have been introduced
and studied (see, e.g., [14–28] (for a more complete list of references see the bibliography
of [29])). A connection between the normal ordering of q-deformed bosons and q-deformed
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Stirling numbers was established in [20] and has been considered further in [2, 30, 31]. Very
recently, generalizations of the ‘classical’ Stirling numbers were introduced in connection with
conformal transformations in the plane [32] and with the normal ordering of ordinary bosons,
where one considers expressions of the form [(a†)ras]n for natural numbers r, s [33–35]. First
properties of these generalized Stirling (and associated Bell) numbers have been established
in [32–35]. It is, therefore, natural to consider the analogous q-deformed generalized Stirling
numbers appearing in the normal ordering of the corresponding expressions for the q-deformed
bosons, thus following the same strategy exploited successfully by Katriel and co-workers in
the case r = s = 1 [2, 20, 30, 31]. This is what we will begin here. Let us note that the
Hermitian operator (a†)rar is of importance in quantum optics (see, e.g., the references given
in [33–35]). In recent works the relation between q-deformed oscillators and certain nonlinear
(undeformed) oscillators is studied (see, e.g., the literature given in [25]). In the study of the
dynamical properties of the q-deformed oscillator and its comparison with the undeformed
case the q-deformed Stirling numbers as well as the q-deformed Dobinski relation are used
[25]. The approach of introducing nonlinearities into a system by q-deforming it has been
applied to various systems and in particular to quantum optics (see, e.g., [27] and the references
given therein). Therefore, one should expect that the q-deformation of (a†)rar should play
a role in q-deformed quantum optics (and indeed, it appears, e.g., in [27]). Apart from this
application the number operator of the q-deformed oscillator consists of a (weighted) sum
over the operators (a†)rar , so that whenever powers of the number operator are considered
the q-deformed generalized Stirling (and Bell) numbers will appear. Let us stress that the
q-deformed boson we will consider is that considered in [14, 15] (in the literature also called
‘math’ boson), but we will very briefly discuss its relation to the q-deformed boson of [16, 17]
(the ‘phys’ boson). More general (and systematic) approaches to deformations of bosons (and
fermions) have been considered, the most famous of them using quantum groups, see, e.g.,
[29]. Recently another algebraic approach based on the q-deformed phase space introduced
in [36] has been discussed [21–23]. The q-deformed phase space is based on noncommutative
variables x, p (as well as a further variable); the associated ∗-algebra is interpreted as the
algebra of observables. It is possible to show that the creation and annihilation operators of
the q-deformed oscillator can be expressed as particular linear combinations of these generating
variables [21–23, 26].

This paper is organized as follows. In section 2 we recall some basic facts about the
‘classical’ Stirling numbers and some of the results of [32–35] about the generalized Stirling
numbers. Some additional properties of the generalized Stirling numbers are derived in
section 3. In section 4 we consider the q-deformed boson and the associated q-deformed
Stirling numbers, following the above-mentioned strategy of [2, 20, 30, 31]. In section 5 the
q-deformed generalized Stirling numbers are discussed and it is shown that they are given
in the first non-trivial case by q-deformed Lah numbers. Some conclusions are drawn in
section 6.

2. Bosons, Stirling numbers and generalized Stirling numbers

Recall that the standard bosonic commutation relations [a, a†] = 1 can be realized formally in
a suitable space of functions by letting a = d

dx
and a† = x (operator of multiplication with the

identity). When considering the action of
(
x d

dx

)n
on f (x) certain integers S(n, k), the Stirling

numbers of second kind [3] appear(
x

d

dx

)n

f (x) =
n∑

k=1

S(n, k)xk

(
d

dx

)k

f (x). (1)
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Equation (1) may also be written as

(a†a)n =
n∑

k=1

S(n, k)(a†)kak (2)

thereby exemplifying the normal ordering problem of writing (a†a)n with all the operators a
on the right. Note that there exists a relation

S(n + m, k) =
k∑

µ,ν=1

(
µ

k − ν

)
ν!

(k − µ)!
S(n, ν)S(m,µ) (3)

reducing for m = 1 to the well-known recursion relation

S(n + 1, k) = S(n, k − 1) + kS(n, k) (4)

of the Stirling numbers (cf [3], p 226). Using generating functions, it is straightforward to
derive from (4) an explicit expression for the Stirling numbers (cf [37], p 19):

S(n, k) =
k∑

p=0

(−1)k−p pn−1

(p − 1)!(k − p)!
≡ (−1)k

k!

k∑
p=0

(−1)p
(

k

p

)
pn. (5)

Introducing the falling factorials by xk = x(x − 1) · · · (x − k + 1), the Stirling numbers can
also be written as connection coefficients (cf [4], p 207),

xn =
n∑

k=1

S(n, k)xk. (6)

Denoting the rising factorials by xn̄ = x(x + 1) · · · (x + n − 1), one may also define the
Stirling numbers of first kind by xn̄ = ∑n

k=1 s(n, k)xk. In the following we will consider
only Stirling numbers of second kind. S(n, k) has the combinatorial interpretation of counting
the number of partitions of a set of n distinguishable elements into k non-empty sets. The Bell
numbers B(n) are defined by

B(n) =
n∑

k=1

S(n, k) (7)

(and B(0) = 1, S(n, 0) = δn,0 by convention). Inserting f (x) = ex in (1), using the series
expansion of the exponential function and evaluating the resulting expression at x = 1 yields
the Dobinski relation (cf [4], p 210)

B(n) = 1

e

∞∑
k=1

kn

k!
. (8)

To show a connection to coherent states, we first recall that the harmonic oscillator has
Hamiltonian H = a†a (neglecting the zero-point energy) and the usual eigenstates |n〉 (for
n ∈ N) satisfying H |n〉 = n|n〉 and 〈m|n〉 = δmn. Let us now define for z ∈ C the coherent
state

|z〉 = e− |z|2
2

∞∑
n=0

zn

√
n!

|n〉. (9)

These states are normalized, i.e., 〈z|z〉 = 1, and satisfy a|z〉 = z|z〉. It has been noted in [2]
that for z with |z|2 = 1 one has (due to (2) and (7))

〈z|(a†a)n|z〉 =
n∑

k=1

S(n, k) = B(n). (10)
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More generally, one may consider the matrix elements of eλa†a . Following [2] we introduce
fz(λ) ≡ 〈z|eλa†a|z〉 and take a derivative with respect to λ, obtaining dfz(λ)

dλ
= 〈z|eλa†aa†a|z〉.

Using eλa†aa†a = a†eλ(a†a+1)a, this leads to the initial-value problem

dfz(λ)

dλ
= |z|2 eλfz(λ) fz(0) = 1. (11)

The solution is given by fz(λ) = exp(|z|2[eλ − 1]). From (10) it follows also that for |z|2 = 1
one has fz(λ) = ∑∞

n=0
λn

n! B(n). This implies the well-known exponential generating function
of the Bell numbers (cf [3, 4])

eeλ−1 =
∞∑

n=0

λn

n!
B(n). (12)

The authors of [33–35] introduced for r � s certain generalized Stirling numbers Sr,s (n, k) by

[(a†)ras]n = (a†)n(r−s)

ns∑
k=s

Sr,s (n, k)(a†)kak (13)

clearly S1,1(n, k) ≡ S(n, k) from above. The case of s = 1 was considered in [32] in
connection with conformal transformations on the plane. In fact, the vector fields

{
xr d

dx

}
r�0

are part of the classical Virasoro algebra (no central charge). In [33–35] generalized Bell
numbers Br,s(n) (with B1,1(n) ≡ B(n) from above) were defined as

Br,s(n) =
ns∑

k=s

Sr,s (n, k) (14)

and explicit formulae were given for Br,s(n) and Sr,s (n, k); in particular,

Sr,r (n, k) = (−1)k

k!

k∑
p=0

(−1)p
(

k

p

)
(pr)n. (15)

Furthermore, the generalized Bell numbers were interpreted as moments of positive measures
and equation (10) was generalized to the case of arbitrary r and s, yielding 〈z|[(a†)ras]n|z〉 =
Br,s(n).

3. Further properties of generalized Stirling numbers

Relation (4) may be shown directly using

a(a†)r = (a†)ra + r(a†)r−1 (16)

for r = n + 1. Iterating (16), one obtains

an(a†)r =
n∑

k=0

(
n

k

)
r!

(r − n + k)!
(a†)r−n+kak. (17)

Writing (a†a)n+m = (a†a)n(a†a)m, using on both sides (2) and commuting on the right-hand
side all a to the right with the help of (17) yields (3). The same strategy may be applied for
the expression [(a†)ras]n+m. The result is

Sr,s(n + m, k) =
k∑

µ,ν=s

(
µ

k − ν

) {n(r − s) + ν}!
{n(r − s) + k − µ}!Sr,s (n, ν)Sr,s (m,µ). (18)
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Note that the formula simplifies drastically in the case r = s (and reduces for r = 1 = s to (3)).
From (18) one obtains for m = 1 the recursion relation

Sr,s (n + 1, k) =
k∑

ν=k−s

(
s

k − ν

) {n(r − s) + ν}!
{n(r − s) + k − s}!Sr,s (n, ν) (19)

which generalizes (4) to the case of arbitrary r and s. In the case r = s the relation (19) has
already been given in [35]. In analogy with (6) these generalized Stirling numbers are also
connection coefficients [35]:

(xr)n =
rn∑

k=r

Sr,r (n, k)xk. (20)

Considering (19) for s = 1, only two terms remain on the right-hand side, yielding

Sr,1(n + 1, k) = Sr,1(n, k − 1) + {n(r − 1) + k}Sr,1(n, k). (21)

Relation (21) appeared already in [32]. Choosing r = 2 yields

S2,1(n + 1, k) = S2,1(n, k − 1) + (n + k)S2,1(n, k) (22)

which is exactly the defining relation for the (signless) Lah numbers L(n, k) [33, 34]; thus,
one obtains the explicit expression

S2,1(n, k) = L(n, k) ≡ n!

k!

(
n − 1

k − 1

)
. (23)

The signless Lah numbers are the connection coefficients between rising and falling factorials
(cf [4], p 156),

xn̄ =
n∑

k=0

L(n, k)xk. (24)

Let us now derive a generalized Dobinski relation for the Br,r (n) following the approach
sketched in section 2 for B(n) ≡ B1,1(n). First recall that we can write (13) in the case r = s

also as [
xr

(
d

dx

)r]n

f (x) =
nr∑

k=r

Sr,r (n, k)xk

(
d

dx

)k

f (x). (25)

Choosing f (x) = ex , one checks that

xr

(
d

dx

)r ∞∑
k=0

xk

k!
=

∞∑
k=r

krxk

k!
.

Iterating this n times and inserting the result in (25) yields
∞∑

k=r

(kr)nxk

k!
=

nr∑
k=r

Sr,r (n, k)xk ex .

Now, choosing x = 1 and recalling (14) gives the generalized Dobinski relation

Br,r (n) = 1

e

∞∑
k=r

(kr)n

k!
(26)

which reduces for r = 1 to the Dobinski relation (8). Relation (26) was stated also in [35]
(and in a slightly different form also in [33, 34]). Let us consider the exponential generating
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function
∑

n
λn

n! Br,r (n). Inserting the explicit expression for Br,r (n) (and the convention
Br,r(0) = 1), a careful calculation shows that

∞∑
n=0

λn

n!
Br,r (n) = 1

e

∞∑
k=0

eλkr

k!
− 1

e

r−1∑
k=0

eλkr − 1

k!
.

This gives an alternative expression to that given in [35]. In particular, the second sum on
the right-hand side vanishes for r = 1 and the first one gives eeλ−1, thus reproducing (12).
Since one has for |z|2 = 1 that 〈z|[(a†)rar]n|z〉 = Br,r (n), the exponential generating function
equals 〈z|eλ(a†)rar |z〉, so that the above equation can also be written as (still assuming |z|2 = 1)

〈z|eλ(a†)rar |z〉 = 1

e

∞∑
k=0

eλkr

k!
− 1

e

r−1∑
k=0

eλkr − 1

k!
.

4. Normal ordering of q-deformed bosons/fermions and q-Stirling numbers

Now, we want to consider the q-deformed version of the above story. Recall that the Q-
deformed harmonic oscillator was defined in [16, 17] in terms of creation and annihilation
operators b† and b and the number operator N satisfying

bb† − Qb†b = Q−N [N, b†] = b† [N, b] = −b (27)

here Q is a real number. Clearly, the limit Q → 1 gives the usual commutation relations.
(In the following we will abbreviate this limit by writing ‘Q = 1’.) A different version
of the deformed harmonic oscillator can be obtained by defining [18, 19] operators a, a†

through equations b ≡ Q
1
2 aQ− N

2 and b† ≡ Q
1
2 Q− N

2 a†. From (27) one concludes that
[N, a†] = a†, [N, a] = −a as well as

aa† − qa†a = 1 (28)

here we have set q ≡ Q2. This version of the deformed harmonic oscillator has been
considered first in [14, 15]. In the following, we will be interested in the combinatorial
consequences of (28) (and not in the number operator). Mostly we will treat q as a formal
indeterminate (commuting with a, a†), but whenever concrete values are considered, we
assume that q ∈ (−1, 1] (note that the q coming from (27) is positive); the degenerate case
q = 0 will not be considered explicitly. For q < 0 we may write q ≡ −q̃ with a positive q̃;
then the relation (28) can be written (with f instead of a) as

ff † + q̃f †f = 1 [N, f †] = f † [N, f ] = −f. (29)

These are exactly the commutation relations of the q̃-deformed fermionic oscillator as
introduced in [38, 39] (in fact, one has the relations gg† + Qg†g = Q−N , [N, g†] = g†,
[N, g] = −g, but the transformations g ≡ Q− N

2 f, g† ≡ f †Q− N
2 yield (29) with q̃ ≡ Q2

[39]). Again, considering q̃ → 1 yields the ordinary fermionic oscillator (but see below).
Recall that the very similar relations gg† + Qg†g = QN, [N, g†] = g†, [N, g] = −g, g2 =
(g†)2 = 0 are equivalent to the usual fermionic commutation relations (see, e.g., [38–41]).
Thus, considering q ∈ (−1, 1] in (28) allows us to treat the bosonic and fermionic cases
uniformly. Denoting by Dq the q-derivative introduced by Jackson (for q-analysis one may
consider, e.g., [42]), i.e.,

Dqf (x) = f (qx) − f (x)

(q − 1)x
(30)

we obtain formally a realization of (28) on a suitable space of functions by letting a = Dq

and a† = x, since [Dq, x]q = 1. For q < 0 we write q ≡ −q̃, so that Dq ≡ DF
q̃ with
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DF
q̃ f (x) = {f (x) − f (−q̃x)}/{(1 + q̃)x}. In particular, in the limit q̃ → 1 one finds

DF
1 f (x) = {f (x) − f (−x)}/2x. Note that DF

1 f vanishes for symmetric functions (i.e.,
f (−x) = f (x)) and yields f (x)/x for odd functions (i.e., f (−x) = −f (x)). Let us
intruduce the q-deformed Stirling numbers S(n, k|q) in close analogy with (1) by

(xDq)
nf (x) =

n∑
k=1

S(n, k|q)xkDk
qf (x) (31)

equivalently, this may be defined in analogy with (2) by [20]

(a†a)n =
n∑

k=1

S(n, k|q)(a†)kak (32)

where a, a† satisfy (28). The associated q-deformed Bell numbers are given by

B(n|q) =
n∑

k=1

S(n, k|q). (33)

It is clear that considering q = 1 yields the ‘classical’ Stirling and Bell numbers, i.e.,
S(n, k|q = 1) = S(n, k) and B(n|q = 1) = B(n). It is very tempting to consider also the
‘fermionic limit’ q → −1 and introduce the ‘fermionic’ Stirling and Bell numbers SF (n, k)

and BF (n) by

SF (n, k) = lim
q→−1

S(n, k|q) BF (n) = lim
q→−1

B(n|q).

Note that S(n, k|q) will be a polynomial in q of degree at most n
2 (n− 1) (the highest power of

q appears when one commutes all a to the right; here one acquires (n − 1) + (n − 2) + · · · + 1
factors of q). Let us give some examples. For n = 1 there exists only S(1, 1|q) = 1; for
n = 2 one has S(2, 1|q) = 1 and S(2, 2|q) = q . More interesting is the case n = 3, where
one has S(3, 1|q) = 1, S(3, 2|q) = 2q + q2, S(3, 3|q) = q3, and the case n = 4, where one
has S(4, 1|q) = 1, S(4, 2|q) = 3q + 3q2 + q3, S(4, 3|q) = 3q3 + 2q4 + q5, S(4, 4|q) = q6. Of
course, considering q = 1 yields the classical Stirling numbers. Considering q → −1 yields
SF (1, 1) = 1; SF (2, 1) = 1, SF (2, 2) = −1; SF (3, 1) = 1, SF (3, 2) = −1, SF (3, 3) = −1 as
well as SF (4, 1) = 1, SF (4, 2) = −1, SF (4, 3) = −1, SF (4, 4) = 1. From the usual fermionic
algebra ff † + f †f = 0 one infers that (f †f )n = f †f , so that the ‘physical’ coefficients
S

ph
F (n, k) in (f †f )n = ∑n

k=1 S
ph
F (n, k)(f †)kf k should be given by S

ph
F (n, k) = δk,1. Clearly,

SF (n, k) 	= S
ph
F (n, k). But note the ambiguity in the ‘definition’ of S

ph
F (n, k); since f k = 0

for k � 2, the coefficients S
ph
F (n, k) for k � 2 are in fact arbitrary (as long as they are finite).

So, we may conclude that the SF (n, k) are indeed the fermionic counterpart to the ‘bosonic’
Stirling numbers S(n, k). This ambiguity when considering the limit q̃ → 1 in the fermionic
situation is closely related to the ‘weak exclusion principle’ discussed (e.g., in [39, 43, 44]).
For the following we introduce the standard notation [n] ≡ [n]q = (1 + q + · · ·+ qn−1) = 1−qn

1−q

and

[n]! ≡ [n][n − 1] · · · [2][1] [n; k] ≡ [n]

[n − k][k]
(34)

for the q-factorials and q-binomial coefficients. Note that we will suppress the index q in the
following as far as possible, only displaying it when necessary. Let us point out that in the
case q < 0 we may write q ≡ −q̃ with a positive q̃. It follows that

[n]q ≡ 1 − qn

1 − q
= 1 − (−q̃)n

1 + q̃
≡ [n]Fq̃
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here the last equation is the definition of the q̃-fermionic basic number appearing in recent
studies of the q̃-deformed fermionic oscillator (see, e.g., [38, 39, 43, 44]). Note that the limit
q̃ → 1 yields [n]q=−1 ≡ [n]Fq̃=1 = {1 − (−1)n}/2, i.e., zero if n is even and 1 otherwise. In
particular, [n]q=−1! = 0 for n � 2. Let us now introduce the q-deformed exponential function
by

eq(x) =
∞∑

k=0

xk

[k]!

where the sum converges uniformly for |x| < Rq ≡ (1 − q)−1; note that R1 = ∞ whereas
taking the limit q → −1 in eq(x) is problematic. Since Dqeq(x) = eq(x), one may apply (31)
to f (x) = eq(x) to obtain (using the series expansion of eq and Dqx

m = [m]xm−1)

1

eq(x)

∞∑
k=1

[k]n

[k]!
xk =

n∑
k=1

S(n, k|q)xk

which reduces for x = 1 to the q-deformed version of the Dobinski relation (8), i.e.,

B(n|q) = 1

eq(1)

∞∑
k=1

[k]n

[k]!
. (35)

This q-deformed Dobinski relation was established by Milne [8] and has been proved by
different methods in different contexts (see, e.g., [2, 12, 13]). Iterating relation (28) yields
a(a†)n − qn(a†)na = [n](a†)n−1, which may be used to obtain the recursion relation

S(n + 1, k|q) = qk−1S(n, k − 1|q) + [k]S(n, k|q). (36)

This is the q-deformed version of the recursion relation of the Stirling numbers, yielding in the
limit q → 1 equation (4). Formula (36) shows that the Stirling numbers S(n, k|q) are indeed
the q-deformed Stirling numbers in the version considered by Milne [8]. The q-deformed
Stirling numbers were introduced in a slightly different form by Carlitz [5, 6] and have been
considered (in one or the other version) from a purely mathematical point of view [7–13].
Katriel and Kibler observed [20] that they play an important role in the study of the q-boson.
Note that one obtains from (36) in the ‘fermionic’ limit q → −1 the recursion relation

SF (n + 1, k) = (−1)k−1SF (n, k − 1) +
{1 − (−1)k}

2
SF (n, k) (37)

(with initial values SF (1, 1) = 1 and SF (1, 0) = 0). From (36) one concludes that
S(n + 1, n + 1|q) = qnS(n, n|q) and since S(1, 1|q) = 1 that

S(n, n|q) = q
n
2 (n−1) ≡ q(

n

2 ).

Let us consider two special cases of S(n, k|q). The first case is k = 2. From the explicit
formula (39)—or directly from (36)—one finds that S(n, 2|q) = [2]n−1 − 1, generalizing the
well-known formula S(n, 2) = 2n−1 − 1. The second case is k = n. The recursion relation
(36) yields S(n + 1, n|q) = q(

n

2 )[n] + qn−1S(n, n − 1|q), from which one infers the analogue
of the well-known formula1 S(n + 1, n) = n

2 (n + 1):

S(n + 1, n|q) = q(
n

2 )

n∑
k=1

[k].

1 In the undeformed case one may deduce this also from S(n+ 1, k + 1) = ∑n
l=k

(
n
l

)
S(l, k) by considering k = n−1;

according to [31] there exists the following q-deformed analogue of this relation (identity 1 of [31]): S(n+1, k+1|q) =∑n
l=k

(
n
l

)
S(l, k|q)ql . Unfortunately, choosing k = n − 1 yields S(n + 1, n|q) = q(

n
2 )n + qnS(n, n − 1|q), whereas

choosing k = n in (36) yields S(n + 1, n|q) = q( n
2 )[n] + qn−1S(n, n − 1|q), indicating that this q-deformed analogue

might be incorrect.
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Although the general expression (39) is well known in the existing literature, we now sketch
how one may determine it in a direct approach following closely the one of the undeformed
case. For this we introduce the formal generating function Tk(x) = ∑

n�0 S(n, k|q)xn (here
and in the following calculation we assume that q ∈ (−1, 1]). Now, (36) implies for the
generating function

Tk(x) = q(
k

2 )xk

k∏
p=1

1

(1 − [p]x)
. (38)

As in the undeformed case (cf [37], p 19) one writes the product as
∏k

p=1
1

(1−[p]x)
=∑k

p=1
αp

1−[p]x . To determine the coefficient αp, multiply both sides with (1−[p]x) and consider
then x = 1/[p]. Using [m] − [n] = qn[m − n], one finds

αp = (−1)k−p qp2−kp−(
p

2 )[p]k−1

[p − 1]![k − p]!

and therefore

Tk(x) = q(
k

2 )xk

k∑
p=1

(−1)k−pqp2−kp−(
p

2 ) [p]k−1

[p − 1]![k − p]!(1 − [p]x)
.

Since S(n, k|q) is the coefficient of xn in Tk(x), this yields the explicit expression

S(n, k|q) =
k∑

p=1

(−1)k−pq(
k−p

2 ) [p]n−1

[p − 1]![k − p]!
≡ (−1)k

[k]!

k∑
p=0

(−1)pq(
k−p

2 )[k; p][p]n (39)

which generalizes (5) in a beautiful manner (in the sense that taking q → 1 reproduces (5)).
Note that this approach does not work for q = −1, since the recursion relation (37) for the
SF (n, k) does not imply the generating function (38). Furthermore, it also seems to be non-
trivial to consider the limit q → −1 in the explicit formula (39) to obtain somehow SF (n, k),
since there will appear summands diverging due to [m]q=−1! = 0 for m � 2. Thus, one
should start directly from relation (37) to obtain an explicit formula. The q-deformed Stirling
numbers are also connection coefficients analogous to (6),

[x]n =
n∑

k=1

S(n, k|q)[x]k (40)

where [x]k = [x][x − 1] · · · [x − k + 1]. For the following we need the analogue of (17). A
slightly tedious induction shows that

an(a†)r =
n∑

k=0

qk(k+r−n)[n; k]
[r]!

[r − n + k]!
(a†)r−n+kak. (41)

As in the case q = 1 this may be used to derive a recursion relation for the S(n, k|q). The
result is

S(n + m, k|q) =
k∑

µ,ν=1

q(k−µ)(k−ν)[µ; k − ν]
[ν]!

[k − µ]!
S(m,µ|q)S(n, ν|q). (42)

This reduces for q = 1 to (3) and for m = 1 to (36). Let us now discuss the relation of the
q-deformed Bell numbers to coherent states; for the following we assume that q ∈ (0, 1]
(the fermionic case with q ∈ (−1, 0) requires the introduction of ‘pseudo-grassmann’
variables [39]). Recall that the Fock space associated with (28) is spanned by states |n; q〉



4660 M Schork

(with n = 0, 1, 2, . . .) defined by a|0; q〉 = 0 and |n; q〉 = (a†)n√
[n]!

|0; q〉. The action of the

operators a†, a is given by

a†|n; q〉 =
√

[n + 1]|n + 1; q〉 a|n; q〉 =
√

[n]|n − 1; q〉. (43)

In this setting one introduces in analogy with (9) the coherent states

|z; q〉 = {eq(|z|2)}− 1
2

∞∑
n=0

zn

√
[n]!

|n; q〉. (44)

It is then straightforward to show that for z with |z|2 = 1 one has in analogy with (10) the
equation [2]

〈q; z|(a†a)n|z; q〉 = B(n|q). (45)

It is also straightforward to consider the matrix elements 〈q; l|(a†a)n|m; q〉. They vanish
when l 	= m and are given for l = m by

〈q; m|(a†a)n|m; q〉 =
min(n,m)∑

k=1

[m]!

[m − k]!
S(n, k|q).

Consequently, the matrix elements of eq(λa†a) are given by

〈q; m|eq(λa†a)|m; q〉 =
∞∑

n=0

min(n,m)∑
k=1

λn[m]!

[n]![m − k]!
S(n, k|q). (46)

The expressions for the undeformed case follow by considering q = 1. It would be highly
desirable to have an explicit expression for ‘the’ exponential generating function of the
q-deformed Bell numbers (analogous to (12)). However, in the deformed setting there are
two natural series one may consider [8]:

�q(λ) =
∑
n�0

λn

[n]!
B(n|q) �q(λ) =

∑
n�0

λn

n!
B(n|q).

No explicit expression seems to be known for either series. Using B(n + 1|q) =∑n
k=0

(
n

k

)
qkB(k|q), it is shown in [8] that

d�q(λ)

dλ
= eλ�q(qλ). (47)

For the ‘more natural’ candidate �q no such simple relation is known. Let us, therefore, try
to imitate the approach sketched in section 2 using coherent states and see what the problem
is. We introduce the function

gz(λ) = 〈q; z|eq(λa†a)|z; q〉 =
∞∑

n=0

λn

[n]!

n∑
k=0

S(n, k|q)|z|2k

note that for z with |z|2 = 1 one has gz(λ) = �q(λ). Taking the q-derivative with respect to
λ gives

Dλgz(λ) = 〈q; z|eq(λa†a)a†a|z; q〉 = |z|2〈q; z|eq(λ[qa†a + 1])|z; q〉
where we have used in the second equation that eq(λa†a)a†a = a†eq(λ[qa†a + 1])a. Note that
if it were true that eq(λ[qa†a + 1]) = eq(λ)eq(λqa†a) we would obtain in analogy with (11)
and (47) the equation Dλ�q(λ) = eq(λ)�q(qλ). Unfortunately, there does not exist a simple
addition law for the q-deformed exponential function (but see [45] and the references given
therein for a discussion of addition laws of related q-exponential functions). Let us therefore



Combinatorics of normal ordering bosonic operators 4661

try the direct approach of inserting the explicit expression for B(n|q) into the generating
function (as we did at the end of section 3). Since the mixing of ‘ordinary’ and q-numbers
seems to produce no interesting result, we consider �q . A simple calculation (considering
q-numbers as real numbers, not polynomials in q) yields

�q(λ) = 1

eq(1)

∞∑
k=0

eλ[k]

[k]!
.

Taking the derivative with respect to λ and using [k + 1] = [1] + q[k] = 1 + q[k] shows that
�q(λ) satisfies indeed (47). Following the above-mentioned strategy not to mix the two types
of numbers, one is tempted to introduce �q([λ]) = ∑

n�0
[λ]n

[n]! B(n|q). Inserting B(n|q) gives

�q([λ]) = (1/eq(1))
∑

k�0
eq ([λ][k])

[k]! . Due to the lack of ‘good’ properties of the q-exponential
function, this version does not seem to be interesting. Summarizing the above discussion,
it seems to be rather difficult to find an appropriate substitute for the exponential generating
function of the Bell numbers in the q-deformed case.

5. The q-deformed generalized Stirling numbers

Let us now introduce the q-deformed generalized Stirling numbers Sr,s (n, k|q) by the same
equations as in (13),

[(a†)ras]n = (a†)n(r−s)

ns∑
k=s

Sr,s (n, k|q)(a†)kak

but where now the operators satisfy (28). Clearly, S1,1(n, k|q) ≡ S(n, k|q) as well as
Sr,s(n, k|q = 1) ≡ Sr,s (n, k). This may also be written in terms of the q-derivative Dq

as

[xr(Dq)
s]nf (x) = xn(r−s)

ns∑
k=s

Sr,s (n, k|q)xk(Dq)
kf (x). (48)

As above one may also introduce the corresponding q-deformed generalized Bell numbers,

Br,s(n|q) =
ns∑

k=s

Sr,s (n, k|q).

Using (41), one derives the following recursion relation for the Sr,s (n, k|q):

Sr,s(n + m, k|q) =
k∑

µ,ν=s

q(k−ν){(k−µ)+n(r−s)}

× [µ; k − ν]
[n(r − s) + ν]!

[n(r − s) + k − µ]!
Sr,s (n, ν|q)Sr,s(m,µ|q). (49)

Let us state some particular cases explicitly. For m = 1 one finds

Sr,s(n + 1, k|q) =
k∑

ν=k−s

q(k−ν){(k−s)+n(r−s)}[s; k − ν]
[n(r − s) + ν]!

[n(r − s) + k − s]!
Sr,s (n, ν|q).

Choosing furthermore s = 1 simplifies this relation to

Sr,1(n + 1, k|q) = q(k−1)+n(r−1)Sr,1(n, k − 1|q) + [n(r − 1) + k]Sr,1(n, k|q). (50)
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This is a q-deformed version of (21). Recall that the (signless) Lah numbers L(n, k) correspond
to the case r = 2 of (21), i.e., S2,1(n, k) = L(n, k). Choosing r = 2 in (50) gives the recursion
relation

S2,1(n + 1, k|q) = qn+k−1S2,1(n, k − 1|q) + [n + k]S2,1(n, k|q) (51)

this reduces for q = 1 to the recursion relation (22) of the ‘ordinary’ Lah numbers. Let
us denote these q-deformed Lah numbers by L(n, k|q) ≡ S2,1(n, k|q). From the recursion
relation it follows directly that L(n, 1|q) = [n]! and L(n, n|q) = qn(n−1). In general, the
solution to (51) is given by

L(n, k|q) = qk(k−1) [n]!

[k]!
[n − 1; k − 1] (52)

these numbers are exactly the q-deformed Lah numbers introduced in [9, 10] in a combinatorial
context. Let us briefly check that these numbers satisfy indeed (51). First one uses
[r; s] = [r − 1; s − 1] + qs[r − 1; s] to obtain

L(n + 1, k|q) = q2(k−1) [n + 1]

[k]
L(n, k − 1|q) + qk−1[n + 1]L(n, k|q).

Now, using [n + 1] = qn+1−k[k] + [n + 1 − k] as well as [k − 1]L(n, k|q) = q2(k−1)[n − k +
1]/[k]L(n, k − 1|q) gives the relation

L(n + 1, k|q) = qn+k−1L(n, k − 1|q) + {[k − 1] + qk−1[n + 1]}L(n, k|q)

which is, due to [k − 1] + qk−1[n + 1] = [n + k], exactly (51). It was already mentioned in
[10] that the L(n, k|q) introduced above are, in complete analogy with (24), the connection
coefficients between rising and falling q-factorials,

[x]n̄ =
n∑

k=0

L(n, k|q)[x]k.

Recently two different types of q-deformed Lah numbers were introduced in connection with
lattices and finite geometries [13] (of course, in the limit q → 1 all of these deformed Lah
numbers reproduce the ‘classical’ ones (23)):

L̃q(n, k) = n!

k!
[n − 1; k − 1] Lq(n, k) = q(

k

2 )L̃q (n, k).

Due to the mixing of ‘ordinary’ and q-numbers there does not seem to exist a sufficiently
simple recursion relation for these generalized Lah numbers (as was already noted in [13]).
As an example, one has L̃q(n + 1, k) = L̃q(n, k − 1) + {(k − 1) + qk−1(n + 1)}L̃q(n, k).
Since (51) was derived in complete analogy with the undeformed case (22) using the normal
ordering of certain operators, one is led to the conclusion that—at least in the physical
context—L(n, k|q) is the ‘more natural’ q-deformed Lah number. Let us consider the
general case where r = s. As the common generalization of (20) and (40) one has

{[x]r}n =
rn∑

k=r

Sr,r (n, k|q)[x]k (53)

and the common generalization of (15) and (39) is

Sr,r (n, k|q) = (−1)k

[k]!

k∑
p=0

(−1)pq(
k−p

2 )[k; p]{[p]r}n. (54)
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Now, let us briefly discuss the q-deformed version of the generalized Dobinski relation (26).
The starting point is (48) with r = s and where we choose f (x) = eq(x). Since

[xr(Dq)
r ]n

∞∑
k=0

xk

[k]!
=

∞∑
k=r

{[k]r}nxk

[k]!

choosing x = 1 allows one to infer from (48) that

Br,r (n|q) = 1

eq(1)

∞∑
k=r

{[k]r}n
[k]!

. (55)

Clearly, this reduces for r = 1 to the usual q-Dobinski relation (35) and for q = 1 to the
generalized Dobinski relation (26). Using the q-deformed coherent states (44), it is easy to
check that for |z|2 = 1 one has

〈q; z|[(a†)ras]n|z; q〉 = Br,s(n|q) (56)

generalizing the case r = s = 1 of (45). This implies that (still assuming |z|2 = 1)

〈q; z|eq{λ(a†)rar}|z; q〉 =
∞∑

n=0

λn

[n]!
Br,r (n|q).

Now, let us consider the matrix elements 〈q; l|[(a†)ras]n|m; q〉. It is sufficient to consider the
case where l = m + n(r − s), since in the other cases the matrix elements vanish. The result is

〈q; m + n(r − s)|[(a†)ras]n|m; q〉 =
min(sn,m)∑

k=s

√
[m + n(r − s)]!

[m]!

[m]!

[m − k]!
Sr,s(n, k|q).

Note that for r = s the square root on the right-hand side reduces to 1. In particular, this gives
for 〈q; m|eq{λ(a†)rar}|m; q〉 an expression nearly identical to (46), except that min(n,m)

gets replaced by min(rn,m) and S(n, k|q) ≡ S1,1(n, k|q) by Sr,r (n, k|q). Considering q = 1
yields the corresponding formulae of the undeformed case. Now, let us consider the number
operator N of the q-deformed boson introduced in section 4, see (28). Using (43), it is easy to
see that a†a = [N]. Although N is not equal to a†a, it can be expressed through creation (a†)
and annihilation (a) operators [46, 47] (see also [48]),

N =
∞∑

r=1

(1 − q)r

1 − qr
(a†)rar ≡

∞∑
r=1

νr(a
†)rar. (57)

Its mth power is therefore given by

Nm =
∞∑

r1,r2,...,rm=1

νr1 · · · νrm
(a†)r1ar1 · · · (a†)rmarm. (58)

Let us split the sum in a ‘diagonal’ part where all ri are equal (i.e., r1 = r2 = · · · = rm) and
the rest consisting of those tupels (r1, . . . , rm) ∈ R, where not all ri are equal. It follows that

Nm =
∞∑

r=1

νm
r [(a†)rar ]m +

∑
(r1,...,rm)∈R

νr1 · · · νrm
(a†)r1ar1 · · · (a†)rmarm.

Using (56), the matrix elements of Nm with respect to the coherent states (44) can be expressed
as (assuming again |z|2 = 1)

〈q; z|Nm|z; q〉 =
∞∑

r=1

νm
r Br,r (m|q) +

∑
(r1,...,rm)∈R

νr1 · · · νrm
〈q; z|(a†)r1 · · · arm|z; q〉.

The explicit evaluation of the second sum is a straightforward (but tedious) computation
involving repeated application of (41) and will not be done here. Note that considering the
matrix elements 〈q; n|Nm|n; q〉 will involve the q-deformed generalized Stirling numbers
Sr,r (m, k|q) instead of the Bell numbers Br,r (m|q).



4664 M Schork

6. Conclusions

Following the approach of Katriel and co-workers [2, 20, 30, 31], we have considered
(generalized) Stirling numbers and their q-deformed version by studying closely the
commutator relation of bosons and a q-deformed version of it. In particular, we have introduced
certain ‘fermionic’ Stirling numbers as well as a q-deformed version of the generalized Stirling
numbers introduced in [32–35] and showed that the simplest example for the latter is given
by the q-deformed Lah numbers introduced in [9, 10]. We have shown that the matrix
elements of the operators [(a†)ras]n with respect to the ususal Fock space basis involve
the generalized Stirling numbers, whereas considering the matrix elements with respect to
coherent states involve the generalized Bell numbers. It is tempting to generalize (13) further
and introduce generalized Stirling numbers of ‘rank m’ (where those of (13) correspond to
m = 1 and the ‘classical’ ones to m = 1 where in addition r1 = s1 = 1). To do this, let
r1, s1, r2, s2, . . . , rm, sm be some natural numbers satisfying ri � si and let R = r1 + · · · + rm

and similarly S = s1 + · · · + sm (note that R � S). Now, define the Stirling numbers of rank
m by

[(a†)r1as1(a†)r2as2 · · · (a†)rmasm]n = (a†)n(R−S)

nS∑
k=sm

Sr1,s1,...,rm,sm
(n, k)(a†)kak.

Clearly, for m = 1 they reproduce the generalized Stirling numbers studied above. Of course,
one can analogously define the q-deformed version Sr1,s1,...,rm,sm

(n, k|q). These numbers should
be studied in the same fashion as those of rank one (e.g., recurrence relations, associated Bell
numbers). Note that one can now rewrite (58) as

Nm =
∞∑

r1,r2,...,rm=1

R∑
k=rm

νr1 · · · νrm
Sr1,r1,...,rm,rm

(1, k|q)(a†)kak.

As a very simple example consider (a†aa†a)n = ∑2n
k=1 S1,1,1,1(n, k)(a†)kak. Since one may

first use the commutation relation inside the bracket yielding [(a†)2a2 + a†a]n, application of
the binomial theorem and the definition of the Stirling numbers of rank one yields after some
algebra for the Stirling numbers S1,1,1,1(n, k) of rank two

S1,1,1,1(n, k) =
n∑

r=0

2r∑
l=2

n−r∑
m=1

(
n

r

)(
l

k − m

)
m!

(k − l)!
S2,2(r, l)S1,1(n − r,m)

(with the obvious conventions). Note that in the general case the number of different orders
of application of the commutation relations and the definition of Stirling numbers of various
ranks will yield a huge amount of identities among Stirling numbers of various ranks. As
a final point we want to mention that a connection between the (p, q)-deformed oscillator
introduced in [49] and studied further in, e.g., [50, 51], and the (p, q)-deformed Stirling
numbers of [11] was already found in [20]. However, it seems that no attempt has been made
to study this connection closer (studying, e.g., associated Bell numbers, Dobinski relations
and the connection to coherent states), although it obviously deserves more interest.

References

[1] Katriel J 1974 Lett. Nuovo Cimento 10 565
[2] Katriel J 2000 Phys. Lett. A 237 159
[3] Andrews G E 1976 The Theory of Partitions (London: Addison-Wesley)
[4] Comtet L 1974 Advanced Combinatorics (Dordrecht: Reidel)



Combinatorics of normal ordering bosonic operators 4665

[5] Carlitz L 1933 Trans. Am. Math. Soc. 35 122
[6] Carlitz L 1948 Duke Math. J. 15 987
[7] Gould H W 1961 Duke Math. J. 28 281
[8] Milne S C 1978 Trans. Am. Math. Soc. 245 89
[9] Garsia A M and Remmel J B 1980 Eur. J. Comb. 1 47

[10] Garsia A M and Remmel J B 1986 J. Comb. Theory A 41 246
[11] Wachs M and White D 1991 J. Comb. Theory A 56 27
[12] Zeng J 1995 J. Comput. Appl. Math. 57 413
[13] Wagner C G 1996 Discrete Math. 160 199
[14] Arik M and Coon D D 1976 J. Math. Phys. 17 524
[15] Kuryshkin V V 1980 Ann. Fond. Louis de Broglie 5 111
[16] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[17] Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581
[18] Floratos E G and Tomaras T N 1990 Phys. Lett. B 251 163
[19] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
[20] Katriel J and Kibler M 1992 J. Phys. A: Math. Gen. 25 2683
[21] Lorek A, Ruffing A and Wess J 1997 Z. Phys. C 74 369
[22] Cerchiai B L, Hinterding R, Madore J and Wess J 1999 Eur. Phys. J. C 8 547
[23] Wess J 1999 Preprint math-ph/9910013
[24] Bonatsos D and Daskaloyannis C 1999 Prog. Part. Nucl. Phys. 43 537
[25] Gruver J L 1999 Phys. Lett. A 254 1
[26] Bardek V and Meljanac S 2000 Eur. Phys. J. C 17 539
[27] Quesne C 2002 Preprint quant-ph/0206188
[28] Parthasarathy R and Sridhar R 2002 Preprint math.QA/0208128
[29] Chari V and Pressley A 1995 A Guide to Quantum Groups (Cambridge: Cambridge University Press)
[30] Katriel J and Duchamp G 1995 J. Phys. A: Math. Gen. 28 7209
[31] Katriel J 1998 J. Phys. A: Math. Gen. 31 3559
[32] Lang W 2000 J. Int. Seqs. 12 article 01.1.4
[33] Penson K A and Solomon A I 2002 Preprint quant-ph/0211028
[34] Penson K A and Solomon A I 2002 Preprint quant-ph/0211061
[35] Blasiak P, Penson K A and Solomon A I 2002 Preprint quant-ph/0212072
[36] Fichtmüller M, Lorek A and Wess J 1996 Z. Phys. C 71 533
[37] Wilf H A 1990 Generatingfunctionology (San Diego: Academic)
[38] Parthasarathy R and Visvanathan K S 1991 J. Phys. A: Math. Gen. 24 613
[39] Visvanathan K S, Parthasarathy R and Jagannathan R 1992 J. Phys. A: Math. Gen. 25 L335
[40] Jing S and Xu J 1991 J. Phys. A: Math. Gen. 24 L891
[41] Bonatsos D and Daskaloyannis C 1993 J. Phys. A: Math. Gen. 26 1589
[42] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester: Ellis Horwood)
[43] Narayana Swamy P 1999 Preprint quant-ph/09909015
[44] Narayana Swamy P 2001 Preprint quant-ph/0109062
[45] Suslov S 2000 J. Phys. A: Math. Gen. 33 L375
[46] Chaturvedi S, Kapoor A K, Sandhya R, Srinivasan V and Simon R 1991 Phys. Rev. A 43 4555
[47] Chaturvedi S and Srinivasan V 1991 Phys. Rev. A 44 8020
[48] Chakrabarti R and Jagannathan R 1992 J. Phys. A: Math. Gen. 25 6393
[49] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 24 L711
[50] Floreanini R, Lapointe L and Vinet L 1993 J. Phys. A: Math. Gen. 26 L611
[51] Ren-Shan G 1994 J. Phys. A: Math. Gen. 27 L375


